Question

The maximum value of $$\left( {\cot \,{\alpha _1}} \right).\left( {\cot \,{\alpha _2}} \right)\,.....\,\left( {\cot \,{\alpha _n}} \right),$$   ;   under the restrictions $$0 \leqslant {\alpha _1},{\alpha _2},.....,{\alpha _n} \leqslant \frac{\pi }{2}\,{\text{and}}$$      $$\left( {\cot \,{\alpha _1}} \right).\left( {\cot \,{\alpha _2}} \right)\,.....\,\left( {\cot \,{\alpha _n}} \right) = 1$$        is

A. $$\frac{1}{{{2^{\frac{n}{2}}}}}$$  
B. $$\frac{1}{{{2^n}}}$$
C. $$\frac{1}{{2n}}$$
D. 1
Answer :   $$\frac{1}{{{2^{\frac{n}{2}}}}}$$
Solution :
We are given that
$$\eqalign{ & \left( {\cot \,{\alpha _1}} \right).\left( {\cot \,{\alpha _2}} \right)\,.....\,\left( {\cot \,{\alpha _n}} \right) = 1 \cr & \Rightarrow \,\left( {\cos \,{\alpha _1}} \right)\left( {\cos \,{\alpha _2}} \right)\,.....\,\left( {\cos \,{\alpha _n}} \right) \cr & = \left( {\sin \,{\alpha _1}} \right)\,\left( {\sin \,{\alpha _2}} \right)\,.....\left( {\sin \,{\alpha _n}} \right)\,\,\,\,\,\,\,\,\,.....\left( 1 \right) \cr & {\text{Let}}\,y\,{\text{ = }}\left( {\cos \,{\alpha _1}} \right)\,\left( {\cos \,{\alpha _2}} \right)....\,\left( {\cos \,{\alpha _n}} \right)\,\left( {{\text{to}}\,{\text{be}}\,{\text{max}}{\text{.}}} \right) \cr & {\text{Squaring}}\,{\text{both}}\,{\text{sides,}}\,{\text{we}}\,{\text{get}} \cr & {y^{\text{2}}}{\text{ = }}\,\left( {{{\cos }^2}\,{\alpha _1}} \right)\,\,\left( {{{\cos }^2}\,{\alpha _2}} \right)\,.....\,\left( {{{\cos }^2}\,{\alpha _n}} \right) \cr & = \,\cos \,{\alpha _1}\,\sin \,{\alpha _1}\,\cos \,{\alpha _2}\,\sin \,{\alpha _2}\,.....\,\cos \,{\alpha _n}\,\sin \,{\alpha _n}\,\,\,\,\left( {{\text{Using}}\,\left( 1 \right)} \right) \cr & = \,\frac{1}{{{2^n}}}\,\left[ {\sin \,2{\alpha _1}\,\sin \,2{\alpha _2}\,.....\sin 2\,{\alpha _n}} \right] \cr & {\text{As}}\,\,0 \leqslant {\alpha _1},\,{\alpha _2},.....{\alpha _n} \leqslant \frac{\pi }{2} \cr & \therefore \,\,\,0 \leqslant 2{\alpha _1},\,2{\alpha _2},.....\sin \,2{\alpha _n}\, \leqslant \pi \cr & \Rightarrow \,\,0 \leqslant \,\sin \,2{\alpha _1},\,\sin \,2{\alpha _2},.....\,\sin \,2{\alpha _n}\, \leqslant 1 \cr & \therefore \,{y^2}\, \leqslant \,\frac{1}{{{2^n}}}.1 \cr & \Rightarrow \,\,y \leqslant \,\frac{1}{{{2^{\frac{n}{2}}}}} \cr} $$
∴ Max. value of $$y$$ is $$\frac{1}{{{2^{\frac{n}{2}}}}}.$$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section