Question

The maximum value of $$1 + \sin \left( {\frac{\pi }{4} + \theta } \right) + 2\cos \left( {\frac{\pi }{4} - \theta } \right)$$       for real values of $$\theta $$ is

A. 3
B. 5
C. 4  
D. None of these
Answer :   4
Solution :
Value $$ = 1 + \frac{1}{{\sqrt 2 }}\left( {\cos \theta + \sin \theta } \right) + \sqrt 2 \left( {\cos \theta + \sin \theta } \right)$$
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 1 + \left( {\frac{1}{{\sqrt 2 }} + \sqrt 2 } \right) \cdot \left( {\cos \theta + \sin \theta } \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 1 + \left( {\frac{1}{{\sqrt 2 }} + \sqrt 2 } \right) \cdot \sqrt 2 \cos \left( {\theta - \frac{\pi }{4}} \right). \cr} $$
∴ the maximum value $$ = 1 + \left( {\frac{1}{{\sqrt 2 }} + \sqrt 2 } \right)\sqrt 2 = 4.$$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section