Question

The locus of $$z$$ which lies in shaded region (excluding the boundaries) is best represented by
Complex Number mcq question image

A. $$z:\left| {z + 1} \right| > 2\,\,{\text{and }}\left| {\arg \left( {z + 1} \right)} \right| < \frac{\pi }{4}$$  
B. $$z:\left| {z - 1} \right| > 2\,\,{\text{and }}\left| {\arg \left( {z - 1} \right)} \right| < \frac{\pi }{4}$$
C. $$z:\left| {z + 1} \right| < 2\,\,{\text{and }}\left| {\arg \left( {z + 1} \right)} \right| < \frac{\pi }{2}$$
D. $$z:\left| {z - 1} \right| < 2\,\,{\text{and }}\left| {\arg \left( {z + 1} \right)} \right| < \frac{\pi }{2}$$
Answer :   $$z:\left| {z + 1} \right| > 2\,\,{\text{and }}\left| {\arg \left( {z + 1} \right)} \right| < \frac{\pi }{4}$$
Solution :
Here we observe that.
$$AB = AC = AD = 2$$
∴ $$BCD$$  is an arc of a circle with center at $$A$$ and radius 2. Shaded region is outer (exterior) part of this sector $$ABCDA.$$
∴ For any pt. $$z$$ on are $$BCD$$  we should have
$$\left| {z - \left( { - 1} \right)} \right| = 2$$
and for shaded region, $$\left| {z + 1} \right| > 2\,\,\,\,\,\,\,\,......\left( {\text{i}} \right)$$
For shaded region we also have
$$\eqalign{ & - \frac{\pi }{4} < \arg \left( {z + 1} \right) < \frac{\pi }{4} \cr & {\text{or }}\left| {\arg \left( {z + 1} \right)} \right| < \frac{\pi }{4}\,\,\,\,\,\,\,\,\,\,......\left( {{\text{ii}}} \right) \cr} $$
Combining (i) and (ii), (A) is the correct option.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section