Question

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $${y^2} = 4ax$$   is another parabola with directrix :

A. $$x = - a$$
B. $$x = - \frac{a}{2}$$
C. $$x = 0$$  
D. $$x = \frac{a}{2}$$
Answer :   $$x = 0$$
Solution :
If $$\left( {h,\,k} \right)$$  is the mid point of line joining focus $$\left( {a,\,0} \right)$$  and $$Q\left( {a{t^2},\,2at} \right)$$   on parabola then $$h = \frac{{a + a{t^2}}}{2},\,k = at$$
Eliminating $$t,$$  we get $$2h = a + a\left( {\frac{{{k^2}}}{{{a^2}}}} \right)$$
$$ \Rightarrow {k^2} = a\left( {2h - a} \right)\,\,\,\, \Rightarrow {k^2} = 2a\left( {h - \frac{a}{2}} \right)$$
$$\therefore $$ Locus of $$\left( {h,\,k} \right)$$  is $${y^2} = 2a\left( {x - \frac{a}{2}} \right)$$
whose directrix is $$\left( {x - \frac{a}{2}} \right) = - \frac{a}{2}$$
$$ \Rightarrow x = 0$$

Releted MCQ Question on
Geometry >> Locus

Releted Question 1

The equation $$\frac{{{x^2}}}{{1 - r}} - \frac{{{y^2}}}{{1 + r}} = 1,\,\,\,r > 1$$       represents :

A. an ellipse
B. a hyperbola
C. a circle
D. none of these
Releted Question 2

The equation $$2{x^2} + 3{y^2} - 8x - 18y + 35 = k$$       represents :

A. no locus if $$k>0$$
B. an ellipse if $$k<0$$
C. a point if $$k=0$$
D. a hyperbola if $$k>0$$
Releted Question 3

If $$a>2b>0$$    then the positive value of $$m$$ for which $$y = mx - b\sqrt {1 + {m^2}} $$     is a common tangent to $${x^2} + {y^2} = {b^2}$$   and $${\left( {x - a} \right)^2} + {y^2} = {b^2}$$    is :

A. $$\frac{{2b}}{{\sqrt {{a^2} - 4{b^2}} }}$$
B. $$\frac{{\sqrt {{a^2} - 4{b^2}} }}{{2b}}$$
C. $$\frac{{2b}}{{a - 2b}}$$
D. $$\frac{b}{{a - 2b}}$$
Releted Question 4

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $${y^2} = 4ax$$   is another parabola with directrix :

A. $$x = - a$$
B. $$x = - \frac{a}{2}$$
C. $$x = 0$$
D. $$x = \frac{a}{2}$$

Practice More Releted MCQ Question on
Locus


Practice More MCQ Question on Maths Section