Question

The locus of the foot of perpendicular drawn from the centre of the ellipse $${x^2} + 3{y^2} = 6$$   on any tangent to it is -

A. $${\left( {{x^2} + {y^2}} \right)^2} = 6{x^2} + 2{y^2}$$  
B. $${\left( {{x^2} + {y^2}} \right)^2} = 6{x^2} - 2{y^2}$$
C. $${\left( {{x^2} - {y^2}} \right)^2} = 6{x^2} + 2{y^2}$$
D. $${\left( {{x^2} - {y^2}} \right)^2} = 6{x^2} - 2{y^2}$$
Answer :   $${\left( {{x^2} + {y^2}} \right)^2} = 6{x^2} + 2{y^2}$$
Solution :
Given equation of ellipse can be written as
$$\frac{{{x^2}}}{6} + \frac{{{y^2}}}{2} = 1\,\,\,\,\,\,\, \Rightarrow {a^2} = 6,\,\,\,{b^2} = 2$$
Now, equation of any variable tangent is
$$y = mx \pm \sqrt {{a^2}{m^2} + {b^2}} .....({\text{i}})$$
where $$m$$ is slope of the tangent
So, equation of perpendicular line drawn from centre to tangent is
$$y = \frac{{ - x}}{m}.....({\text{ii}})$$
Eliminating $$m,$$  we get
$$\eqalign{ & \left( {{x^4} + {y^4} + 2{x^2}{y^2}} \right) = {a^2}{x^2} + {b^2}{y^2} \cr & \Rightarrow {\left( {{x^2} + {y^2}} \right)^2} = {a^2}{x^2} + {b^2}{y^2} \cr & \Rightarrow \boxed{{{\left( {{x^2} + {y^2}} \right)}^2} = 6{x^2} + 2{y^2}} \cr} $$

Releted MCQ Question on
Geometry >> Locus

Releted Question 1

The equation $$\frac{{{x^2}}}{{1 - r}} - \frac{{{y^2}}}{{1 + r}} = 1,\,\,\,r > 1$$       represents :

A. an ellipse
B. a hyperbola
C. a circle
D. none of these
Releted Question 2

The equation $$2{x^2} + 3{y^2} - 8x - 18y + 35 = k$$       represents :

A. no locus if $$k>0$$
B. an ellipse if $$k<0$$
C. a point if $$k=0$$
D. a hyperbola if $$k>0$$
Releted Question 3

If $$a>2b>0$$    then the positive value of $$m$$ for which $$y = mx - b\sqrt {1 + {m^2}} $$     is a common tangent to $${x^2} + {y^2} = {b^2}$$   and $${\left( {x - a} \right)^2} + {y^2} = {b^2}$$    is :

A. $$\frac{{2b}}{{\sqrt {{a^2} - 4{b^2}} }}$$
B. $$\frac{{\sqrt {{a^2} - 4{b^2}} }}{{2b}}$$
C. $$\frac{{2b}}{{a - 2b}}$$
D. $$\frac{b}{{a - 2b}}$$
Releted Question 4

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $${y^2} = 4ax$$   is another parabola with directrix :

A. $$x = - a$$
B. $$x = - \frac{a}{2}$$
C. $$x = 0$$
D. $$x = \frac{a}{2}$$

Practice More Releted MCQ Question on
Locus


Practice More MCQ Question on Maths Section