Question
The lines $$x = ay + b,\,z = cy + d$$ and $$x = a'y + b',\,z = c'y + d'$$ will be perpendicular if and only if :
A.
$$aa' + bb' + cc' = 0$$
B.
$$\left( {a + a'} \right) + \left( {b + b'} \right) + c + c' = 0$$
C.
$$aa' + cc' + 1 = 0$$
D.
$$aa' + bb' + cc' + 1 = 0$$
Answer :
$$aa' + cc' + 1 = 0$$
Solution :
For the first line, $$x - b = ay,\,z - d = cy\,\,\,\,\, \Rightarrow \frac{{x - b}}{a} = \frac{y}{1} = \frac{{z - d}}{c}.$$
For the second line, $$x - b' = a'y,\,z - d' = c'y\,\,\, \Rightarrow \frac{{x - b'}}{{a'}} = \frac{y}{1} = \frac{{z - d'}}{{c'}}.$$
These lines are perpendicular $$ \Rightarrow \,a.a' + 1.1 + c.c' = 0.$$