Question

The lines $$2x-3y = 5$$   and $$3x-4y = 7$$   are diameters of a circle of area $$154 \,sq.\, units.$$    Then the equation of this circle is-

A. $${x^2} + {y^2} + 2x - 2y = 62$$
B. $${x^2} + {y^2} + 2x - 2y = 47$$
C. $${x^2} + {y^2} - 2x + 2y = 47$$  
D. $${x^2} + {y^2} - 2x + 2y = 62$$
Answer :   $${x^2} + {y^2} - 2x + 2y = 47$$
Solution :
As $$2x-3y-5=0$$    and $$3x-4y-7=0$$    are diameters of circles.
$$\therefore $$ Centre of circle is solution of these two equation $$'s,$$ i.e.
$$\eqalign{ & \frac{x}{{21 - 20}} = \frac{y}{{ - 15 + 14}} = \frac{1}{{ - 8 + 9}} \cr & \Rightarrow x = 1,\,\,y = - 1 \cr & \therefore C\left( {1,\, - 1} \right) \cr} $$
Also area of circle, $$\pi {r^2} = 154$$
$$\eqalign{ & \Rightarrow {r^2} = \frac{{154}}{{22}} \times 7 = 49 \cr & \Rightarrow r = 7 \cr} $$
$$\therefore $$ Equation of required circle is
$$\eqalign{ & {\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {7^2} \cr & \Rightarrow {x^2} + {y^2} - 2x + 2y = 47 \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section