Question

The line $$y = mx$$  bisects the area enclosed by lines $$x = 0,\,y = 0$$    and $$x = \frac{3}{2}$$  and the curve $$y = 1 + 4x - {x^2}.$$    Then the value of $$m$$ is :

A. $$\frac{{13}}{6}$$  
B. $$\frac{{13}}{2}$$
C. $$\frac{{13}}{5}$$
D. $$\frac{{13}}{7}$$
Answer :   $$\frac{{13}}{6}$$
Solution :
$$y = 1 + 4x - {x^2} = 5 - {\left( {x - 2} \right)^2}$$
Application of Integration mcq solution image
We have $$\int\limits_0^{\frac{3}{2}} {\left( {1 + 4x - {x^2}} \right)} dx$$
$$\eqalign{ & = 2\int\limits_0^{\frac{3}{2}} {mx\,dx} \cr & = \frac{3}{2} + 2\left( {\frac{9}{4}} \right) - \frac{1}{3}\left( {\frac{{27}}{8}} \right) \cr & = m.\frac{9}{4} \cr} $$
On solving we get $$m = \frac{{13}}{6}$$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section