Question

The line $$x + y = a$$   meets the axes of $$x$$ and $$y$$ at $$A$$ and $$B$$ respectively. A $$\Delta AMN$$   is inscribed in the $$\Delta OAB,\,O$$   being the origin, with right angle at $$N.\,M$$  and $$N$$ lie respectively on $$OB$$  and $$AB.$$  If the area of the $$\Delta AMN$$   is $$\frac{3}{8}$$ of the area of the $$\Delta OAB,$$   then $$\frac{{AN}}{{BN}}$$  is equal to :

A. $$\frac{1}{3}$$
B. $$\frac{1}{3},\,3$$
C. $$\frac{2}{3},\,3$$
D. $$3$$  
Answer :   $$3$$
Solution :
Let $$\frac{{AN}}{{BN}} = \lambda .$$
Then, the coordinates of $$N$$ are $$\left( {\frac{a}{{1 + \lambda }},\,\frac{{\lambda a}}{{1 + \lambda }}} \right).$$
Straight Lines mcq solution image
Where $$\left( {a,\,0} \right)$$  and $$\left( {0,\,a} \right)$$  are the coordinates of $$A$$ and $$B$$ respectively. Now, equation of $$MN$$  perpendicular to $$AB$$  is
$$\eqalign{ & y - \frac{{\lambda a}}{{1 + \lambda }} = x - \frac{a}{{1 + \lambda }} \cr & \Rightarrow x - y = \frac{{1 - \lambda }}{{1 + \lambda }}a \cr} $$
So, the coordinates of $$M$$ are $$\left( {0,\,\frac{{1 - \lambda }}{{1 + \lambda }}a} \right)$$
Therefore, area of the $$\Delta AMN$$   is
$$\eqalign{ & = \frac{1}{2}\left| {\left[ {a\left( {\frac{{ - a}}{{\lambda + 1}}} \right) + \frac{{1 - \lambda }}{{{{\left( {1 + \lambda } \right)}^2}}}{a^2}} \right]} \right| \cr & = \frac{{\lambda {a^2}}}{{{{\left( {1 + \lambda } \right)}^2}}} \cr} $$
Also, area of $$\Delta OAB = \frac{{{a^2}}}{2}$$
So, that according to the given condition
$$\eqalign{ & \frac{{\lambda {a^2}}}{{{{\left( {1 + \lambda } \right)}^2}}} = \frac{3}{8}.\frac{1}{2}{a^2} \cr & \Rightarrow 3{\lambda ^2} - 10\lambda + 3 = 0 \cr & \Rightarrow \lambda = 3{\text{ or }}\lambda = \frac{1}{3} \cr} $$
For $$\lambda = \frac{1}{3},\,M$$   lies outside the segment $$OB$$  and hence the required value of $$\lambda $$ is $$3.$$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section