Question

The line, $$\frac{{x - 2}}{3} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 1}}$$     intersects the curve $$xy = {c^2},\,z = 0$$     if $$c$$ is equal to :

A. $$ \pm 1$$
B. $$ \pm \frac{1}{3}$$
C. $$ \pm \sqrt 5 $$  
D. None
Answer :   $$ \pm \sqrt 5 $$
Solution :
We have, $$z = 0$$  for the point where the line intersects the curve.
Therefore,
$$\eqalign{ & \frac{{x - 2}}{3} = \frac{{y + 1}}{2} = \frac{{0 - 1}}{{ - 1}} \cr & \Rightarrow \frac{{x - 2}}{3} = 1{\text{ and }}\frac{{y + 1}}{2} = 1 \cr & \Rightarrow x = 5{\text{ and }}y = 1 \cr} $$
Put these value in $$xy = {c^2},$$   we get,
$$5 = {c^2} \Rightarrow c = \pm 5$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section