Question

The line which passes through the origin and intersect the two lines $$\frac{{x - 1}}{2} = \frac{{y + 3}}{4} = \frac{{z - 5}}{3},\,\frac{{x - 4}}{2} = \frac{{y + 3}}{3} = \frac{{z - 14}}{4},{\text{ is :}}$$

A. $$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{5}$$  
B. $$\frac{x}{{ - 1}} = \frac{y}{3} = \frac{z}{5}$$
C. $$\frac{x}{1} = \frac{y}{3} = \frac{z}{{ - 5}}$$
D. $$\frac{x}{1} = \frac{y}{4} = \frac{z}{{ - 5}}$$
Answer :   $$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{5}$$
Solution :
Let the line be $$\frac{x}{a} = \frac{y}{b} = \frac{z}{c}......\left( {\text{i}} \right)$$
If line $$\left( {\text{i}} \right)$$ intersects with the line $$\frac{{x - 1}}{2} = \frac{{y + 3}}{4} = \frac{{z - 5}}{3},$$     then
\[\left| \begin{array}{l} a\,\,\,\,\,\,\,\,b\,\,\,\,\,c\\ 2\,\,\,\,\,\,\,\,4\,\,\,\,\,\,3\\ 4\,\,\, - 3\,\,\,\,\,14\, \end{array} \right| = 0 \Rightarrow 9a - 7b - 10c = 0......\left( {{\rm{ii}}} \right)\]
From $$\left( {\text{i}} \right)$$ and $$\left( {\text{i}} \right),$$  we have $$\frac{a}{1} = \frac{b}{{ - 3}} = \frac{c}{5}$$
$$\therefore $$  The line is $$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{5}$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section