Question

The line parallel to the $$x$$-axis and passing through the intersection of the lines $$ax + 2by + 3b = 0$$     and $$bx -2ay-3a=0,$$     where $$\left( {a,\,b} \right) \ne \left( {0,\,0} \right)$$     is-

A. below the $$x$$-axis at a distance of $$\frac{3}{2}$$ from it  
B. below the $$x$$-axis at a distance of $$\frac{2}{3}$$ from it
C. above the $$x$$-axis at a distance of $$\frac{3}{2}$$ from it
D. above the $$x$$-axis at a distance of $$\frac{2}{3}$$ from it
Answer :   below the $$x$$-axis at a distance of $$\frac{3}{2}$$ from it
Solution :
The line passing through the intersection of lines
$$ax+ 2by =3b=0$$     and $$bx-2ay-3a=0$$     is
$$\eqalign{ & ax + 2by + 3b + \lambda \left( {bx - 2ay - 3a} \right) = 0 \cr & \Rightarrow \left( {a + b\lambda } \right)x + \left( {2b - 2a\lambda } \right)y + 3b - 3\lambda a = 0 \cr} $$
As this line is parallel to x-axis.
$$\eqalign{ & \therefore a + b\lambda = 0\,\, \Rightarrow \lambda = - \frac{a}{b} \cr & \Rightarrow ax + 2by + 3b - \frac{a}{b}\left( {bx - 2ay - 3a} \right) = 0 \cr & \Rightarrow ax + 2by + 3b - ax + \frac{{2{a^2}}}{b}y + \frac{{3{a^2}}}{b} = 0 \cr & y\left( {2b + \frac{{2{a^2}}}{b}} \right) + 3b + \frac{{3{a^2}}}{b} = 0 \cr & y\left( {\frac{{2{b^2} + 2{a^2}}}{b}} \right) = - \left( {\frac{{3{b^2} + 3{a^2}}}{b}} \right) \cr & y = \frac{{ - 3\left( {{a^2} + {b^2}} \right)}}{{2\left( {{b^2} + {a^2}} \right)}} = \frac{{ - 3}}{2} \cr} $$
So it is $$\frac{3}{2}$$ units below $$x$$-axis.

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section