Question

The length of the latus rectum of the parabola $$x = a{y^2} + by + c$$    is :

A. $$\frac{a}{4}$$
B. $$\frac{a}{3}$$
C. $$\frac{1}{a}$$  
D. $$\frac{1}{{4a}}$$
Answer :   $$\frac{1}{a}$$
Solution :
$$\eqalign{ & x = a\left( {{y^2} + \frac{b}{a}y + \frac{{{b^2}}}{{4{a^2}}}} \right) - \frac{{{b^2}}}{{4a}} + c \cr & {\text{or }}a{\left( {y + \frac{b}{{2a}}} \right)^2} = x + \frac{{{b^2}}}{{4a}} - c \cr & {\text{or }}{\left( {y + \frac{b}{{2a}}} \right)^2} = \frac{1}{a}\left\{ {x + \frac{{{b^2} - 4ac}}{{4a}}} \right\} \cr} $$
$$\therefore $$  the latus rectum $$ = \frac{1}{a}.$$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section