Question

The length of the latus rectum of the parabola $$169\left\{ {{{\left( {x - 1} \right)}^2} + {{\left( {y - 3} \right)}^2}} \right\} = {\left( {5x - 12y + 17} \right)^2}$$         is :

A. $$\frac{{14}}{{13}}$$
B. $$\frac{{28}}{{13}}$$  
C. $$\frac{{12}}{{13}}$$
D. none of these
Answer :   $$\frac{{28}}{{13}}$$
Solution :
Here, $${\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = {\left\{ {\frac{{5x - 12y + 17}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }}} \right\}^2}$$
$$\therefore $$  the focus $$ = \left( {1,\,3} \right)$$  and the directrix is $$5x - 12y + 17 = 0$$
The distance of the focus from the directrix $$ = \left| {\frac{{5 \times 1 - 12 \times 3 + 17}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }}} \right| = \frac{{14}}{{13}}$$
$$\therefore $$  latus rectum $$ = 2 \times \frac{{14}}{{13}} = \frac{{28}}{{13}}.$$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section