Question

The length of the diameter of the circle which touches the $$x$$-axis at the point $$\left( {1,\,0} \right)$$  and passes through the point $$\left( {2,\,3} \right)$$  is:

A. $$\frac{{10}}{3}$$  
B. $$\frac{3}{5}$$
C. $$\frac{6}{5}$$
D. $$\frac{5}{3}$$
Answer :   $$\frac{{10}}{3}$$
Solution :
Let centre of the circle be $$\left( {1,\,h} \right)$$  [ $$\because $$ circle touches $$x$$-axis at $$\left( {1,\,0} \right)$$  ]
Circle mcq solution image
Let the circle passes through the point $$B\left( {2,\,3} \right)$$
$$\eqalign{ & \therefore CA = CB\,\,\,\,\,\,\,\left( {{\text{radius}}} \right) \cr & \Rightarrow C{A^2} = C{B^2} \cr & \Rightarrow {\left( {1 - 1} \right)^2} + {\left( {h - 0} \right)^2} = {\left( {1 - 2} \right)^2} + {\left( {h - 3} \right)^2} \cr & \Rightarrow {h^2} = 1 + {h^2} + 9 - 6h \cr & \Rightarrow h = \frac{{10}}{6} = \frac{5}{3} \cr} $$
Thus, diameter is $$2h = \frac{{10}}{3}$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section