Question

The length of the common chord of the parabola $$2{y^2} = 3\left( {x + 1} \right)$$    and the circle $${x^2} + {y^2} + 2x = 0$$    is :

A. $$\sqrt 3 $$  
B. $$2\sqrt 3 $$
C. $$\frac{{\sqrt 3 }}{2}$$
D. none of these
Answer :   $$\sqrt 3 $$
Solution :
Solving the equations,
$$\eqalign{ & {x^2} + \frac{{3\left( {x + 1} \right)}}{2} + 2x = 0 \cr & {\text{or, }}{x^2} + \frac{{7x}}{2} + \frac{3}{2} = 0 \cr & {\text{or, }}2{x^2} + 7x + 3 = 0 \cr & {\text{or, }}\left( {2x + 1} \right)\left( {x + 3} \right) = 0 \cr & {\text{or, }}x = - \frac{1}{2},\, - 3 \cr} $$
But $$x = - 3$$   makes $$y$$ imaginary because $$2{y^2} = 3\left( {x + 1} \right)$$
So, $$x = - \frac{1}{2}\,\,\,\,\,\, \Rightarrow y = \pm \frac{{\sqrt 3 }}{2}$$
$$\therefore $$  the length of the chord $$=$$ the distance between $$\left( { - \frac{1}{2},\,\frac{{\sqrt 3 }}{2}\,} \right)$$   and $$\left( { - \frac{1}{2},\, - \frac{{\sqrt 3 }}{2}\,} \right).$$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section