The least value of the expression $$2\,{\log _{10}}x - {\log _x}\left( {0.01} \right),$$ for $$x > 1,$$ is
A.
10
B.
2
C.
$$- 0.01$$
D.
none of these
Answer :
2
Solution :
$$\eqalign{
& {\text{Let }}y = 2{\log _{10}}x - {\log _x}0.01 \cr
& = 2{\log _{10}}x - \frac{{{{\log }_{10}}0.01}}{{{{\log }_{10}}x}} = 2{\log _{10}}x + \frac{2}{{{{\log }_{10}}x}} \cr
& = 2\left[ {{{\log }_{10}}x + \frac{2}{{{{\log }_{10}}x}}} \right] \cr
& \left[ {{\text{Here }}x > 1\,\, \Rightarrow \,{{\log }_{10}}x > 0} \right] \cr} $$
Now since sum ofa real $$+ ve$$ number and its reciprocal is always greater than or equal to 2.
$$\eqalign{
& \therefore \,\,\,y \geqslant 2 \times 2 \cr
& \Rightarrow \,y \geqslant 4 \cr} $$
∴ Least value of $$y$$ is $$4.$$
Releted MCQ Question on Algebra >> Quadratic Equation
Releted Question 1
If $$\ell ,m,n$$ are real, $$\ell \ne m,$$ then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$ are