Question

The least positive non-integral solution of the equation $$\sin \pi \left( {{x^2} + x} \right) = \sin \pi {x^2}{\text{ is}}$$

A. rational  
B. irrational of the form $$\sqrt p $$
C. irrational of the form $$\frac{{\sqrt p - 1}}{4},$$  where $$p$$ is an odd integer
D. irrational of the form $$\frac{{\sqrt p + 1}}{4},$$  where $$p$$ is an even integer
Answer :   rational
Solution :
$$\eqalign{ & {\text{We have}},\,\,\sin \pi \left( {{x^2} + x} \right) = \sin \pi {x^2} \cr & \Rightarrow \pi \left( {{x^2} + x} \right) = n\pi + {\left( { - 1} \right)^n}\pi {x^2} \cr & \therefore {\text{Either }}{x^2} + x = 2m + {x^2} \cr & \Rightarrow x = 2m \in I \cr & {\text{or }}{x^2} + x = k - {x^2},\,{\text{where }}k\,{\text{is an odd integer}} \cr & \Rightarrow 2{x^2} + x - k = 0 \cr & \Rightarrow x = \frac{{ - 1 \pm \sqrt {1 + 8k} }}{4} \cr} $$
For least positive non-integral solution is $$x = \frac{1}{2},{\text{when }}\,k = 1$$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section