Question

The least difference between the roots, in the first quadrant $$\left( {0 \leqslant x \leqslant \frac{\pi }{2}} \right),$$   of the equation $$4\cos x\left( {2 - 3\,{{\sin }^2}x} \right) + \left( {\cos 2x + 1} \right) = 0{\text{ is}}$$

A. $$\frac{\pi }{6}$$  
B. $$\frac{\pi }{4}$$
C. $$\frac{\pi }{3}$$
D. $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{6}$$
Solution :
We have,
$$\eqalign{ & 4\cos x\left( {2 - 3\,{{\sin }^2}x} \right) + \left( {\cos 2x + 1} \right) = 0 \cr & \Rightarrow 4\cos x\left( {3\,{{\cos }^2}x - 1} \right) + 2\,{\cos ^2}x = 0 \cr & \Rightarrow 2\cos x\left( {6\,{{\cos }^2}x + 2} \right)\left( {2\cos x - 1} \right) = 0 \cr & \Rightarrow 2\cos x\left( {3\cos x + 2} \right)\left( {2\cos x - 1} \right) = 0 \cr & \Rightarrow {\text{either}}\,\,\cos x = 0{\text{ which gives }}x = \frac{\pi }{2} \cr} $$
$${\text{or }}\cos x = - \frac{2}{3}$$
Which gives no value of $$x$$ for which $$0 \leqslant x \leqslant \frac{\pi }{2}$$   or $$\cos x = \frac{1}{2},$$   which gives $$x = \frac{\pi }{3}$$
So, the required difference $$ = \frac{\pi }{2} - \frac{\pi }{3} = \frac{\pi }{6}$$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section