Question
The internuclear distances in $$O – O$$ bonds for $$O_2^ + ,{O_2},O_2^ - $$ and $$O_2^{2 - }$$ respectively are :
A.
$$1.30\,\mathop {\text{A}}\limits^{\text{o}} ,1.49\mathop {\text{A}}\limits^{\text{o}} ,1.12\mathop {\text{A}}\limits^{\text{o}} ,1.21\mathop {\text{A}}\limits^{\text{o}} $$
B.
$$1.49\mathop {\text{A}}\limits^{\text{o}} ,1.21\mathop {\text{A}}\limits^{\text{o}} ,1.12\mathop {\text{A}}\limits^{\text{o}} ,1.30\mathop {\text{A}}\limits^{\text{o}} $$
C.
$$1.21\mathop {\text{A}}\limits^{\text{o}} ,1.12\mathop {\text{A}}\limits^{\text{o}} ,1.49\mathop {\text{A}}\limits^{\text{o}} ,1.30\mathop {\text{A}}\limits^{\text{o}} $$
D.
$$1.12\mathop {\text{A}}\limits^{\text{o}} ,1.21\mathop {\text{A}}\limits^{\text{o}} ,1.30\mathop {\text{A}}\limits^{\text{o}} ,1.49\mathop {\text{A}}\limits^{\text{o}} $$
Answer :
$$1.12\mathop {\text{A}}\limits^{\text{o}} ,1.21\mathop {\text{A}}\limits^{\text{o}} ,1.30\mathop {\text{A}}\limits^{\text{o}} ,1.49\mathop {\text{A}}\limits^{\text{o}} $$
Solution :
The bond length follows the order
$$O_2^ + < {O_2} < O_2^ - < O_2^{2 - }$$
According to this the possible values are
$$1.12\mathop {\text{A}}\limits^{\text{o}} ,1.21\mathop {\text{A}}\limits^{\text{o}} ,1.30\mathop {\text{A}}\limits^{\text{o}} ,1.49\mathop {\text{A}}\limits^{\text{o}} $$