Question

The integral $$\int\limits_0^\pi {\sqrt {1 + 4\,{{\sin }^2}\frac{x}{2} - 4\,\sin \frac{x}{2}} } \,dx$$      equals:

A. $$4\sqrt 3 - 4$$
B. $$4\sqrt 3 - 4 - \frac{\pi }{3}$$  
C. $$\pi - 4$$
D. $$\frac{{2\pi }}{3} - 4 - 4\sqrt 3 $$
Answer :   $$4\sqrt 3 - 4 - \frac{\pi }{3}$$
Solution :
$$\eqalign{ & {\text{Let }}I = \int\limits_0^\pi {\sqrt {1 + 4\,{{\sin }^2}\frac{x}{2} - 4\,\sin \frac{x}{2}} } \,dx \cr & = \int\limits_0^\pi {\left| {2\sin \,\frac{x}{2} - 1} \right|dx} \cr & = \int\limits_0^{\frac{\pi }{3}} {\left( {1 - 2\,\sin \,\frac{x}{2}} \right)dx} + \int\limits_{\frac{\pi }{3}}^\pi {\left( {2\,\sin \,\frac{x}{2} - 1} \right)} \,dx \cr & \left[ {\because \sin \frac{x}{2} = \frac{1}{2} \Rightarrow \frac{x}{2} = \frac{\pi }{6} \Rightarrow x = \frac{\pi }{3},\,\frac{x}{2} = \frac{{5\pi }}{6} \Rightarrow x = \frac{{5\pi }}{3}} \right] \cr & = \left[ {x + 4\,\cos \frac{x}{2}} \right]_0^{\frac{\pi }{3}} + \left[ { - 4\,\cos \frac{x}{2} - x} \right]_{\frac{\pi }{3}}^\pi \cr & = \frac{\pi }{3} + 4\frac{{\sqrt 3 }}{2} - 4 + \left( {0 - \pi + 4\frac{{\sqrt 3 }}{2} + \frac{\pi }{3}} \right) \cr & = 4\sqrt 3 - 4 - \frac{\pi }{3} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section