Question

The greatest and the least absolute value of $$z + 1,$$  where $$\left| {z + 4} \right| \leqslant 3$$   are respectively

A. 6 and 0  
B. 10 and 6
C. 4 and 3
D. None of these
Answer :   6 and 0
Solution :
We have, $$\left| {z + 1} \right| = \left| {z + 4 - 3} \right|\,\,\,.....\left( {\text{i}} \right)$$
Now, $$\left| {z + 4 - 3} \right| \leqslant \left| {z + 4} \right| + \left| { - 3} \right| \leqslant 3 + 3 = 6$$
$$\left[ {{\text{Given }}\left| {z + 4} \right| \leqslant 3\,\,\& \,\,\left| { - 3} \right| = 3} \right]\,\,\therefore \left| {z + 1} \right| \leqslant 6$$
Again $$\left| {z + 1} \right| \geqslant 0$$   [modulus is always non-negative]
∴ Least value of $$\left| {z + 1} \right|$$  may be zero, which occurs
when $$z = - 1,$$  For $$z = - 1,\left| {z + 4} \right| = \left| { - 1 + 4} \right| = 3$$
Which satisfies the given condition that $${\left| {z + 4} \right| \geqslant 3}$$
Hence, the least and the greatest values of $$\left| {z + 1} \right|$$  are 0 and 6.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section