Question

The graph of the function $$\cos \,x.\cos \left( {x + 2} \right) - {\cos ^2}\left( {x + 1} \right)\,$$      is a :

A. straight line passing through the point $$\left( {0,\, - {{\sin }^2}1} \right)$$   with slope 2
B. straight line passing through the origin
C. parabola with vertex $$\left( {1,\, - {{\sin }^2}1} \right)$$
D. straight line passing through the point $$\left( {\frac{\pi }{2},{\mkern 1mu} - {{\sin }^2}1} \right)$$   and parallel to the $$x$$-axis  
Answer :   straight line passing through the point $$\left( {\frac{\pi }{2},{\mkern 1mu} - {{\sin }^2}1} \right)$$   and parallel to the $$x$$-axis
Solution :
The equation of the graph is $$y = \cos \,x.\cos \left( {x + 2} \right) - {\cos ^2}\left( {x + 1} \right)$$
$$\eqalign{ & {\text{or, }}y = \frac{1}{2}\left\{ {\cos \,2 + \cos \,2\left( {x + 1} \right)} \right\} - \frac{1}{2}\left\{ {1 + \cos \,2\left( {x + 1} \right)} \right\} \cr & = \frac{1}{2}\left( {\cos \,2 - 1} \right) \cr & = - \frac{1}{2}.2{\sin ^2}1 \cr & = - {\sin ^2}1 \cr} $$
The graph is parallel to the $$x$$-axis, and $$\left( {\frac{\pi }{2},{\mkern 1mu} - {{\sin }^2}1} \right)$$   satisfies it.

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section