Question

The general solution of the equation $$\left( {1 + {y^2}} \right) + \left( {x - {e^{{{\tan }^{ - 1}}y}}} \right)\frac{{dy}}{{dx}} = 0$$       is :

A. $$2x{e^{{{\tan }^{ - 1}}y}} = {e^{2{{\tan }^{ - 1}}y}} + k$$  
B. $$x{e^{{{\tan }^{ - 1}}y}} = {\tan ^{ - 1}}y + k$$
C. $$x{e^{2{{\tan }^{ - 1}}y}} = {e^{{{\tan }^{ - 1}}y}} + k$$
D. $$x = 2 + k{e^{ - {{\tan }^{ - 1}}y}}$$
Answer :   $$2x{e^{{{\tan }^{ - 1}}y}} = {e^{2{{\tan }^{ - 1}}y}} + k$$
Solution :
$$\eqalign{ & \left( {1 + {y^2}} \right)\frac{{dx}}{{dy}} + x = {e^{{{\tan }^{ - 1}}y}} \cr & {\text{or }}\,\frac{{dx}}{{dy}} + \frac{1}{{1 + {y^2}}}.x = \frac{{{e^{{{\tan }^{ - 1}}y}}}}{{1 + {y^2}}}\,\,{\text{which is in the linear form}}{\text{.}} \cr & {\text{IF}} = {e^{\int {\frac{1}{{1 + {y^2}}}dy} }} = {e^{{{\tan }^{ - 1}}y}}.\,\,\,{\text{So, }}\,x.{e^{{{\tan }^{ - 1}}y}} = \int {\frac{{\left( {{e^{{{\tan }^{ - 1}}{y^2}}}} \right)dy}}{{1 + {y^2}}}} \cr & \therefore x{e^{{{\tan }^{ - 1}}y}} = \frac{{{{\left( {{e^{{{\tan }^{ - 1}}y}}} \right)}^2}}}{2} + \frac{k}{2},\,\,\,\,\left( {{\text{putting }}{e^{{{\tan }^{ - 1}}y}} = z} \right) \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section