Solution :
$$\eqalign{
& f'\left( x \right) = \frac{{1 + x\tan \,x - x\left\{ {\tan \,x + x{{\sec }^2}x} \right\}}}{{{{\left( {1 + x\tan \,x} \right)}^2}}} = \frac{{1 - {x^2}{{\sec }^2}x}}{{{{\left( {1 + x\tan \,x} \right)}^2}}} \cr
& f'\left( x \right) = 0\,\,\,\,\,\,\, \Rightarrow 1 - {x^2}{\sec ^2}x = 0 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \cos \,x = \pm x \cr} $$
$$\therefore \,$$ in the interval $$\left( {0,\,\frac{\pi }{2}} \right),\,f'\left( x \right) = 0$$ can hold for only one value of $$x,$$ say $$\alpha, $$ where $$\cos \,\alpha = \alpha $$ (see the graph).

Verify $$f''\left( x \right) < 0{\text{ at }}x = \alpha $$