Question

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$  
D. $$x$$ which is not an integer
Answer :   No $$x$$
Solution :
When $$x$$ is not an integer, both the functions $$\left[ x \right]$$ and $$\cos \left( {\frac{{2x - 1}}{2}} \right)\pi $$    are continuous.
$$\therefore \,f\left( x \right)$$   continuous on all non integral points.
For $$x = n \in I$$
$$\eqalign{ & \mathop {\lim }\limits_{x \to {n^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {n^ - }} \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi \cr & = \left( {n - 1} \right)\cos \left( {\frac{{2n - 1}}{2}} \right)\pi = 0 \cr & \mathop {\lim }\limits_{x \to {n^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {n^ + }} \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi \cr & = n\cos \left( {\frac{{2n - 1}}{2}} \right)\pi = 0 \cr & {\text{Also }}f\left( n \right) = n\,\cos \frac{{\left( {2n - 1} \right)\pi }}{2} = 0 \cr} $$
$$\therefore \,f$$  is continuous at all integral pts. as well.
Thus, $$f$$ is continuous everywhere.

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section