The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$ denotes the greatest integer function, is discontinuous at-
A.
all $$x$$
B.
All integer points
C.
No $$x$$
D.
$$x$$ which is not an integer
Answer :
No $$x$$
Solution :
When $$x$$ is not an integer, both the functions $$\left[ x \right]$$ and $$\cos \left( {\frac{{2x - 1}}{2}} \right)\pi $$ are continuous.
$$\therefore \,f\left( x \right)$$ continuous on all non integral points.
For $$x = n \in I$$
$$\eqalign{
& \mathop {\lim }\limits_{x \to {n^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {n^ - }} \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi \cr
& = \left( {n - 1} \right)\cos \left( {\frac{{2n - 1}}{2}} \right)\pi = 0 \cr
& \mathop {\lim }\limits_{x \to {n^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {n^ + }} \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi \cr
& = n\cos \left( {\frac{{2n - 1}}{2}} \right)\pi = 0 \cr
& {\text{Also }}f\left( n \right) = n\,\cos \frac{{\left( {2n - 1} \right)\pi }}{2} = 0 \cr} $$
$$\therefore \,f$$ is continuous at all integral pts. as well.
Thus, $$f$$ is continuous everywhere.
Releted MCQ Question on Calculus >> Continuity
Releted Question 1
For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less
than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$ is-
A.
discontinuous at some $$x$$
B.
continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$ does not exist for some $$x$$
C.
$$f'\left( x \right)$$ exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$ does not exist for some $$x$$
The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$ is not defined at $$x = 0.$$ The value which should be assigned to $$f$$ at $$x = 0,$$ so that it is continuous at $$x =0,$$ is-
The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$ denotes the greatest integer function, is discontinuous at-
The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$ (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-