Question

The function $$f\left( x \right) = {\tan ^{ - 1}}\left( {\sin x + \cos x} \right)$$       is an increasing function in

A. $$\left( {0,\frac{\pi }{2}} \right)$$
B. $$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
C. $$\left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$$
D. $$\left( { - \frac{\pi }{2},\frac{\pi }{4}} \right)$$  
Answer :   $$\left( { - \frac{\pi }{2},\frac{\pi }{4}} \right)$$
Solution :
$$\eqalign{ & {\text{Given}}\,f\left( x \right) = {\tan ^{ - 1}}\left( {\sin x + \cos x} \right) \cr & f'\left( x \right) = \frac{1}{{1 + {{\left( {\sin x + \cos x} \right)}^2}}} \cdot \left( {\cos x - \sin x} \right) \cr & = \frac{{\sqrt 2 \cdot \left( {\frac{1}{{\sqrt 2 }}\cos x - \frac{1}{{\sqrt 2 }}\sin x} \right)}}{{1 + {{\left( {\sin x + \cos x} \right)}^2}}} \cr & = \frac{{\left( {\cos \frac{\pi }{4} \cdot \cos x - \sin \frac{\pi }{4} \cdot \sin x} \right)}}{{1 + {{\left( {\sin x + \cos x} \right)}^2}}} \cr & \therefore f'\left( x \right) = \frac{{\sqrt 2 \cos \left( {x + \frac{\pi }{4}} \right)}}{{1 + {{\left( {\sin x + \cos x} \right)}^2}}} \cr & {\text{if}}\,f'\left( x \right) > O\,{\text{then}}\,f\left( x \right)\,{\text{is increasing function}}{\text{.}} \cr & {\text{Hence}}\,f\left( x \right)\,{\text{is increasing,}}\,{\text{if}}\, - \frac{\pi }{2} < x + \frac{\pi }{4} < \frac{\pi }{2} \cr & \Rightarrow - \frac{{3\pi }}{4} < x < \frac{\pi }{4} \cr & {\text{Hence, }}f\left( x \right)\,{\text{is increasing when}}\,n \in \left( { - \frac{\pi }{2},\frac{\pi }{4}} \right) \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section