Question

The function $$f:\frac{R}{{\left\{ 0 \right\}}} \to R$$    given by $$f\left( x \right) = \frac{1}{x} - \frac{2}{{{e^{2x}} - 1}}$$    can be made continuous at $$x = 0$$   by defining $$f\left( 0 \right)$$  as-

A. $$0$$
B. $$1$$  
C. $$2$$
D. $$-1$$
Answer :   $$1$$
Solution :
$$\eqalign{ & {\text{Given, }}f\left( x \right) = \frac{1}{x} - \frac{2}{{{e^{2x}} - 1}} \cr & \Rightarrow f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{1}{x} - \frac{2}{{{e^{2x}} - 1}} \cr & \Rightarrow f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {{e^{2x}} - 1} \right) - 2x}}{{x\left( {{e^{2x}} - 1} \right)}}\,\,\,\left[ {\frac{0}{0}\,\,{\text{from}}} \right] \cr} $$
$$\therefore $$ using, L'Hospital rule
$$\eqalign{ & \Rightarrow f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{4{e^{2x}}}}{{2\left( {x{e^{2x}}\,2 + {e^{2x}}.1} \right) + {e^{2x}}.2}} \cr & \Rightarrow f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{4{e^{2x}}}}{{4x{e^{2x}}\, + 2{e^{2x}} + 2{e^{2x}}}}\,\,\,\left[ {\frac{0}{0}\,\,{\text{from}}} \right] \cr & \Rightarrow f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{4{e^{2x}}}}{{4\left( {x{e^{2x}}\, + {e^{2x}}} \right)}}\,\, = \frac{{4.{e^0}}}{{4\left( {0 + {e^0}} \right)}}\,\, = 1 \cr} $$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section