Question

The function $$f:\left[ {0,3} \right] \to \left[ {1,29} \right],$$     defined by $$f\left( x \right) = 2{x^3} - 15{x^2} + 36x + 1,$$      is

A. one-one and onto
B. onto but not one-one  
C. one-one but not onto
D. neither one-one nor onto
Answer :   onto but not one-one
Solution :
$$\eqalign{ & {\text{We}}\,{\text{have}}\,f\left( x \right) = 2{x^3} - 15{x^2} + 36x + 1 \cr & \Rightarrow f'\left( x \right) = 6{x^2} - 30x + 36 \cr & = 6\left( {{x^2} - 5x + 6} \right) \cr & = 6\left( {x - 2} \right)\left( {x - 3} \right) \cr & \because f'\left( x \right) > 0\forall x \in \left[ {0,2} \right]\,{\text{and}}\,f'\left( x \right) < 0\,\forall \,x \in \left[ {2,3} \right] \cr} $$
$$\therefore f\left( x \right)$$  is increasing on [0, 2] and decreasing on [2,3]
$$\therefore f\left( x \right)$$  is many one on [0, 3]
$${\text{Also}}\,f\left( 0 \right) = 1,f\left( 2 \right) = 29,f\left( 3 \right) = 28$$
$$\therefore $$ Global min = 1 and Global max = 29
i.e., Range of $$f$$ = [1, 29] = codomain
$$\therefore f$$  is onto.

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section