Question
The formula $${\cos ^{ - 1}}\frac{{1 - {x^2}}}{{1 + {x^2}}} = 2{\tan ^{ - 1}}x$$ holds only for
A.
$$x \in R$$
B.
$$\left| x \right| \leqslant 1$$
C.
$$x \in \left( { - 1,1} \right]$$
D.
$$x \in \left[ {1, + \infty } \right)$$
Answer :
$$x \in \left[ {1, + \infty } \right)$$
Solution :
If $$x = - 1,$$ L.H.S $$ = \frac{\pi }{2},$$ R.H.S. $$ = 2 \times \left( { - \frac{\pi }{2}} \right).$$ So, the formula does not hold.
If $$x < - 1,$$ the angle on the L.H.S. is in the second quadrant while the angle on the R.H.S. is 2 $$ \times $$ (angle in the fourth quadrant), which cannot be equal.
If $$x > 1,$$ the angle on the L.H.S. is in the second quadrant while the angle on the R.H.S. is 2 $$ \times $$ (angle in the first quadrant) and these two may be equal.
If $$- 1 < x < 0,$$ the angle on the L.H.S. is positive and that on the R.H.S. is
negative and the two cannot be equal.