Question

The force required to stop a car of mass $$800\,kg,$$  moving at a speed of $$20\,m{s^{ - 1}}$$  over a distance of $$25\,m$$  in $$2.5\,\sec$$  is

A. $$1200\,N$$
B. $$6400\,N$$  
C. $$1600\,N$$
D. $$1800\,N$$
Answer :   $$6400\,N$$
Solution :
As we know, $$\left| a \right| = \left| {\frac{{{v^2} - {u^2}}}{{2S}}} \right| = \frac{{400}}{{50}} = 8\,m/{s^2}.$$
So force required $$ = F = ma$$
$$ = 800 \times 8 = 6400\,N$$

Releted MCQ Question on
Basic Physics >> Impulse

Releted Question 1

The figure shows the position-time $$\left( {x - t} \right)$$  graph of one dimensional motion of a body of mass $$0.4kg.$$  The magnitude of each impulse is
Impulse mcq question image

A. $$0.4Ns$$
B. $$0.8Ns$$
C. $$1.6Ns$$
D. $$0.2Ns$$
Releted Question 2

A rigid ball of mass $$m$$ strikes a rigid wall at $${60^ \circ }$$ and gets reflected without loss of speed as shown in the figure. The value of impulse imparted by the wall on the ball will be
Impulse mcq question image

A. $$mv$$
B. $$2mv$$
C. $$\frac{{mv}}{2}$$
D. $$\frac{{mv}}{3}$$
Releted Question 3

The force $$F$$ acting on a particle of mass $$m$$ is indicated by the force-time graph shown below. The change in momentum of the particle over the time interval from $$0$$ to $$8 s$$  is
Impulse mcq question image

A. $$24\,N{\text{-}}s$$
B. $$20\,N{\text{-}}s$$
C. $$12\,N{\text{-}}s$$
D. $$6\,N{\text{-}}s$$
Releted Question 4

A man of $$50\,kg$$  mass is standing in a gravity free space at a height of $$10\,m$$  above the floor. He throws a stone of $$0.5\,kg$$  mass downwards with a speed $$2\,m{s^{ - 1}}.$$  When the stone reaches the floor, the distance of the man above the floor will be

A. $$9.9\,m$$
B. $$10.1\,m$$
C. $$10\,m$$
D. $$20\,m$$

Practice More Releted MCQ Question on
Impulse


Practice More MCQ Question on Physics Section