Question

The following integral $$\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\left( {2\,{\text{cosec}}\,x} \right)}^{17}}dx} $$    is equal to-

A. $$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} + {e^{ - u}}} \right)}^{16}}du} $$  
B. $$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {{{\left( {{e^u} + {e^{ - u}}} \right)}^{17}}du} $$
C. $$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {{{\left( {{e^u} - {e^{ - u}}} \right)}^{17}}du} $$
D. $$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} - {e^{ - u}}} \right)}^{16}}du} $$
Answer :   $$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} + {e^{ - u}}} \right)}^{16}}du} $$
Solution :
$$\eqalign{ & {\text{Let }}I = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\left( {2\,{\text{cosec}}\,x} \right)}^{17}}dx} \cr & = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\left( {\,{\text{cosec}}\,x + \cot \,x + {\text{cosec}}\,x - \cot \,x} \right)}^{16}}{\text{2}}\,{\text{cosec}}\,x\,dx} \cr & I = 2\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\left( {{\text{cosec}}\,x + \cot \,x + \frac{1}{{{\text{cosec}}\,x + \cot \,x}}} \right)}^{16}}.\,{\text{cosec}}\,x\,dx} \cr & {\text{Let cosec}}\,x + \cot \,x = {e^u} \cr & \Rightarrow \left( { - \,{\text{cosec}}\,x\,\cot \,x - {\text{cosec}}{\,^2}x} \right)dx = {e^u}\,du \cr & \Rightarrow - \,{\text{cosec}}\,x\,dx = du \cr & {\text{Also at }}x = \frac{\pi }{4}{\text{,}}\,u = ln\left( {\sqrt 2 + 1} \right) \cr & {\text{at }}x = \frac{\pi }{2},\,u = ln\,1 = 0 \cr & \therefore I = - 2\,\int\limits_{ln\left( {\sqrt 2 + 1} \right)}^0 {{{\left( {{e^u} + {e^{ - u}}} \right)}^{16}}du} \cr & = 2\int\limits_0^{ln\left( {\sqrt 2 + 1} \right)} {{{\left( {{e^u} + {e^{ - u}}} \right)}^{16}}} du \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section