Question
The foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$$ and the hyperbola $$\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$$ coincide. Then the value of $${b^2}$$ is :
A.
5
B.
7
C.
9
D.
1
Answer :
7
Solution :
For the ellipse, $${a^2} = 16;\,\,{b^2} = {a^2}\left( {1 - {e^2}} \right)$$
$$ \Rightarrow e = \frac{{\sqrt {16 - {b^2}} }}{4}\,\,\,\, \Rightarrow ae = \sqrt {{{16}^2} - {b^2}} $$
For the hyperbola, $${a^2} = \frac{{144}}{{25}},\,\,{b^2} = \frac{{81}}{{25}};\,\,{b^2} = {a^2}\left( {{e^2} - 1} \right) \Rightarrow e = \frac{5}{4} \Rightarrow ae = 3$$
$$\therefore \,\,\,\sqrt {16 - {b^2}} = 3$$