Question

The focal chord to $${y^2} = 16x$$   is tangent to $${\left( {x - 6} \right)^2} + {y^2} = 2,$$    then the possible values of the slope of this chord, are-

A. $$\left\{ { - 1,\,1} \right\}$$  
B. $$\left\{ { - 2,\,2} \right\}$$
C. $$\left\{ { - 2,\, - \frac{1}{2}} \right\}$$
D. $$\left\{ {2,\, - \frac{1}{2}} \right\}$$
Answer :   $$\left\{ { - 1,\,1} \right\}$$
Solution :
For parabola $${y^2} = 16x,$$   focus $$ \equiv \left( {4,\,0} \right).$$
Let $$m$$ be the slope of focal chord then equation is
$$y = m\left( {x - 4} \right).....(1)$$
But given that above is a tangent to the circle
$${\left( {x - 6} \right)^2} + {y^2} = 2$$
With Centre, $$C\left( {6,\,0} \right),\,r = \sqrt 2 $$
$$\therefore $$ Length of $${ \bot ^{{\text{lar}}}}$$  from (6, 0) to (1) $$=r$$
$$\eqalign{ & \Rightarrow \frac{{6m - 4m}}{{\sqrt {{m^2} + 1} }} = \sqrt 2 \cr & \Rightarrow 2m = \sqrt {2\left( {{m^2} + 1} \right)} \cr & \Rightarrow 2{m^2} = {m^2} + 1 \cr & \Rightarrow {m^2} = 1 \cr & \Rightarrow m = \pm 1 \cr} $$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section