Question

The expression which is the general solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{x}{{1 - {x^2}}}y = x\sqrt y $$      is :

A. $$\sqrt y + \frac{1}{3}\left( {1 - {x^2}} \right) = c{\left( {1 - {x^2}} \right)^{\frac{1}{4}}}$$  
B. $$y{\left( {1 - {x^2}} \right)^{\frac{1}{4}}} = c\left( {1 - {x^2}} \right)$$
C. $$\sqrt y {\left( {1 - {x^2}} \right)^{\frac{1}{4}}} = \frac{1}{3}\left( {1 - {x^2}} \right) + c$$
D. none of these
Answer :   $$\sqrt y + \frac{1}{3}\left( {1 - {x^2}} \right) = c{\left( {1 - {x^2}} \right)^{\frac{1}{4}}}$$
Solution :
Divide the equation by $$\sqrt y ,$$ we get $${y^{ - \frac{1}{2}}}\frac{{dy}}{{dx}} + \frac{x}{{1 - {x^2}}}{y^{\frac{1}{2}}} = x$$
$$\eqalign{ & {\text{Put }}{y^{\frac{1}{2}}} = z \cr & \Rightarrow \frac{1}{2}{y^{ - \frac{1}{2}}}\frac{{dy}}{{dx}} = \frac{{dz}}{{dx}} \cr & \Rightarrow 2\frac{{dz}}{{dx}} + \frac{x}{{1 - {x^2}}}z = x \cr & \Rightarrow \frac{{dz}}{{dx}} + \left( {\frac{1}{2}\frac{x}{{1 - {x^2}}}} \right)z = \frac{x}{2} \cr & {\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\frac{1}{2}} \left[ {\frac{x}{{1 - {x^2}}}} \right]dx}} = {e^{ - \frac{1}{4}\log \left( {1 - {x^2}} \right)}} = {\left( {1 - {x^2}} \right)^{ - \frac{1}{4}}} \cr & {\text{The solution is}} \cr & z{\left( {1 - {x^2}} \right)^{ - \frac{1}{4}}} = \int {\frac{x}{2}{{\left( {1 - x} \right)}^{ - \frac{1}{4}}}dx + c} \cr & \Rightarrow z{\left( {1 - {x^2}} \right)^{ - \frac{1}{4}}} = \frac{1}{2}\int {{{\left( {1 - {x^2}} \right)}^{ - \frac{1}{4}}}x\,dx + c} \cr & \Rightarrow \sqrt y {\left( {1 - {x^2}} \right)^{ - \frac{1}{4}}} = \frac{1}{2}\left( { - \frac{1}{2}} \right)\frac{{{{\left( {1 - {x^2}} \right)}^{\frac{3}{4}}}}}{{\frac{3}{4}}} + c \cr & \Rightarrow \sqrt y {\left( {1 - {x^2}} \right)^{ - \frac{1}{4}}} = - \frac{1}{3}{\left( {1 - {x^2}} \right)^{\frac{3}{4}}} + c \cr & \Rightarrow \sqrt y + \frac{1}{3}\left( {1 - {x^2}} \right) = c{\left( {1 - {x^2}} \right)^{\frac{1}{4}}} \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section