Question

The expression $$\frac{{\tan A}}{{1 - \cot A}} + \frac{{\cot A}}{{1 - \tan A}}$$     can be written as:

A. $$\sin A\cos A + 1$$
B. $$\sec A\,{\text{cosec}}\,A + 1$$  
C. $$\tan A + \cot A$$
D. $$\sec A + \,{\text{cosec}}\,A$$
Answer :   $$\sec A\,{\text{cosec}}\,A + 1$$
Solution :
Given expression can be written as
$$\eqalign{ & \frac{{\sin A}}{{\cos A}} \times \frac{{\sin A}}{{\sin A - \cos A}} + \frac{{\cos A}}{{\sin A}} \times \frac{{\cos A}}{{\cos A - \sin A}} \cr & \left( {\because \,\,\tan A = \frac{{\sin A}}{{\cos A}}\,{\text{and }}\cot A = \frac{{\cos A}}{{\sin A}}} \right) \cr & = \frac{1}{{\sin A - \cos A}}\left\{ {\frac{{{{\sin }^3}A - {{\cos }^3}A}}{{\cos A\sin A}}} \right\} \cr & = \frac{{{{\sin }^2}A + \sin A\cos A + {{\cos }^2}A}}{{\sin A\cos A}} \cr & = 1 + \sec A\,{\text{cosec}}\,A \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section