Question

The equation of the plane containing the line $$2x-5y+z=3; \,x+y+4z=5,$$       and parallel to the plane, $$x+3y+6z=1,$$    is :

A. $$x+3y+6z=7$$  
B. $$2x+6y+12z=-13$$
C. $$2x+6y+12z=13$$
D. $$x+3y+6z=-7$$
Answer :   $$x+3y+6z=7$$
Solution :
Equation of the plane containing the lines
$$\eqalign{ & 2x - 5y + z = 3{\text{ and }}x + y + 4z = 5{\text{ is}} \cr & 2x - 5y + z - 3 + \lambda \left( {x + y + 4z - 5} \right){\text{ = 0}} \cr & \Rightarrow \left( {2 + \lambda } \right)x + \left( { - 5 + \lambda } \right)y + \left( {1 + 4\lambda } \right)z + \left( { - 3 - 5\lambda } \right) = 0.....({\text{i}}) \cr} $$
Since the plane (i) parallel to the given plane $$x+3y+6z=1$$
$$\therefore \frac{{2 + \lambda }}{1} = \frac{{ - 5 + \lambda }}{3} = \frac{{1 + 4\lambda }}{6}\,\,\,\,\, \Rightarrow \lambda = - \frac{{11}}{2}$$
Hence equation of the required plane is
$$\eqalign{ & \left( {2 - \frac{{11}}{2}} \right)x + \left( { - 5 - \frac{{11}}{2}} \right)y + \left( {1 - \frac{{44}}{2}} \right)z + \left( { - 3 + \frac{{55}}{2}} \right) = 0 \cr & \Rightarrow x + 3y + 6z = 7 \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section