Question

The equation of the plane bisecting the acute angle between the planes $$x - y + z - 1 = 0$$    and $$x + y + z = 2$$   is :

A. $$x + z = \frac{3}{2}$$  
B. $$2y = 1$$
C. $$x - y - z = 3$$
D. none of these
Answer :   $$x + z = \frac{3}{2}$$
Solution :
Rewriting the equations
$$\eqalign{ & - x + y - z + 1 = 0 \cr & - x - y - z + 2 = 0 \cr & {\text{Here, }}{d_1} = 1 > 0,\,{d_2} = 2 > 0{\text{ and}} \cr & {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = \left( { - 1} \right)\left( { - 1} \right) + 1\left( { - 1} \right) + \left( { - 1} \right)\left( { - 1} \right) = 1 > 0 \cr} $$
$$\therefore $$  the bisector of the angle containing the origin is not the bisector of the acute angle.
$$\therefore $$  the required bisector has the equation $$\frac{{ - x + y - z + 1}}{{\sqrt {{{\left( { - 1} \right)}^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = - \frac{{ - x - y - z + 2}}{{\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} }}.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section