Question

The equation of the locus of the middle point of a chord of the circle $${x^2} + {y^2} = 2\left( {x + y} \right)$$    such that the pair of lines joining the origin to the point of intersection of the chord and the circle are equally inclined to the $$x$$-axis is :

A. $$x + y = 2$$  
B. $$x - y = 2$$
C. $$2x - y = 1$$
D. none of these
Answer :   $$x + y = 2$$
Solution :
Circle mcq solution image
Solving $$y = mx$$   and $${x^2} + {y^2} - 2x - 2y = 0,$$     we get
$$\eqalign{ & {x^2} + {m^2}{x^2} - 2x - 2mx = 0 \cr & \Rightarrow \,x = 0,\,\frac{{2\left( {1 + m} \right)}}{{1 + {m^2}}} \cr} $$
Similarly, solving $$y = - mx$$   and the equation of the circle, we get
$$\eqalign{ & x = 0,\,\frac{{2\left( {1 - m} \right)}}{{1 + {m^2}}} \cr & \therefore \,A = \left( {\frac{{2\left( {1 + m} \right)}}{{1 + {m^2}}},\,\frac{{2m\left( {1 + m} \right)}}{{1 + {m^2}}}} \right)\,{\text{and }}B = \left( {\frac{{2\left( {1 - m} \right)}}{{1 + {m^2}}},\,\frac{{ - 2m\left( {1 - m} \right)}}{{1 + {m^2}}}} \right) \cr} $$
Let the middle point of $$AB$$  be $$\left( {\alpha ,\,\beta } \right).$$  Then
$$\eqalign{ & \alpha = \frac{1}{2}\left( {\frac{{2\left( {1 + m} \right)}}{{1 + {m^2}}} + \frac{{2\left( {1 - m} \right)}}{{1 + {m^2}}}} \right){\text{ and }}\beta = \frac{1}{2}\left( {\frac{{2m\left( {1 + m} \right)}}{{1 + {m^2}}} + \frac{{ - 2m\left( {1 - m} \right)}}{{1 + {m^2}}}} \right) \cr & \therefore \,\,\alpha = \frac{2}{{1 + {m^2}}},\,\beta = \frac{{2{m^2}}}{{1 + {m^2}}} \cr} $$
Eliminating m from these, $$\alpha + \beta = 2.$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section