Question

The equation of the line passing through $$\left( { - 4,\,3,\,1} \right),$$   parallel to the plane $$x+2y-z-5=0$$     and intersecting the line $$\frac{{x + 1}}{{ - 3}} = \frac{{y - 3}}{2} = \frac{{z - 2}}{{ - 1}}$$     is :

A. $$\frac{{x - 4}}{2} = \frac{{y + 3}}{1} = \frac{{z + 1}}{4}$$
B. $$\frac{{x + 4}}{1} = \frac{{y - 3}}{1} = \frac{{z - 1}}{3}$$
C. $$\frac{{x + 4}}{3} = \frac{{y - 3}}{{ - 1}} = \frac{{z - 1}}{1}$$  
D. $$\frac{{x + 4}}{{ - 1}} = \frac{{y - 3}}{1} = \frac{{z - 1}}{1}$$
Answer :   $$\frac{{x + 4}}{3} = \frac{{y - 3}}{{ - 1}} = \frac{{z - 1}}{1}$$
Solution :
Let any point on the intersecting line
$$\frac{{x + 1}}{{ - 3}} = \frac{{y - 3}}{2} = \frac{{z - 2}}{{ - 1}} = \lambda \,\,\,\,\left( {{\text{say}}} \right)$$
is $$\left( { - 3\lambda - 1,\,2\lambda + 3,\, - \lambda + 2} \right)$$
Since, the above point lies on a line which passes through the point $$\left( { - 4,\,3,\,1} \right)$$
Then, direction ratio of the required line
$$\eqalign{ & = \left\langle { - 3\lambda - 1 + 4,\,2\lambda + 3 - 3,\, - \lambda + 2 - 1} \right\rangle \cr & {\text{or,}}\,\left\langle { - 3\lambda + 3,\,2\lambda ,\, - \lambda + 1} \right\rangle \cr} $$
Since, line is parallel to the plane $$x+2y-z-5=0$$
Then, perpendicular vector to the line is $$\hat i + 2\hat j - \hat k$$
$$\eqalign{ & {\text{Now }}\left( { - 3\lambda + 3} \right)\left( a \right) + \left( {2\lambda } \right)\left( b \right) + \left( { - \lambda + 1} \right)\left( { - 1} \right) = 0 \cr & \Rightarrow \lambda = - 1 \cr} $$
Now direction ratio of the required line
$$ = \left\langle {6,\, - 2,\,2} \right\rangle {\text{ or }}\left\langle {3,\, - 1,\,1} \right\rangle $$
Hence required equation of the line is $$\frac{{x + 4}}{3} = \frac{{y - 3}}{{ - 1}} = \frac{{z - 1}}{1}$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section