Question

The equation of the circle of radius $$2\sqrt 2 $$  whose centre lies on the line $$x - y = 0$$   and which touches the line $$x + y = 4,$$   and whose centre’s coordinates satisfy the inequality $$x + y > 4$$   is :

A. $${x^2} + {y^2} - 8x - 8y + 24 = 0$$  
B. $${x^2} + {y^2} = 8$$
C. $${x^2} + {y^2} - 8x + 8y = 24$$
D. none of these
Answer :   $${x^2} + {y^2} - 8x - 8y + 24 = 0$$
Solution :
$$\eqalign{ & {\text{The centre}} = \left( {t,\,t} \right) \cr & {\text{The radius}}\,\, = 2\sqrt 2 = \left| {\frac{{t + t - 4}}{{\sqrt 2 }}} \right|.\,\,{\text{So, }}\left| {2t - 4} \right| = 4 \cr & \therefore \,\,2t - 4 = \pm 4,\,{\text{i}}{\text{.e}}{\text{.,}}\,t = 4,\,0.\,\,{\text{So, the centre}} = \left( {4,\,4} \right),\,\left( {0,\,0} \right) \cr & \therefore \,\,{\text{satisfying}}\,\,x + y > 4,\,{\text{the centre}} = \left( {4,\,4} \right). \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section