Question

The equation of a plane passing through the line of intersection of the planes $$x+2y+3z=2$$    and $$x-y+z=3$$   and at a distance $$\frac{2}{{\sqrt 3 }}$$ from the point $$\left( {3,\,1,\, - 1} \right)$$   is :

A. $$5x-11y+z=17$$  
B. $$\sqrt 2 x + y = 3\sqrt 2 - 1$$
C. $$x + y + z = \sqrt 3 $$
D. $$x - \sqrt 2 y = 1 - \sqrt 2 $$
Answer :   $$5x-11y+z=17$$
Solution :
The plane passing through the intersection line of given planes is
$$\eqalign{ & \left( {x + 2y + 3z - 2} \right) + \lambda \left( {x - y + z - 3} \right) = 0 \cr & {\text{or}}\,\,\,\left( {1 + \lambda } \right)x + \left( {2 - \lambda } \right)y + \left( {3 + \lambda } \right)z + \left( { - 2 - 3\lambda } \right) = 0 \cr} $$
Its distance from the point $$\left( {3,\,1,\, - 1} \right)$$   is $$\frac{2}{{\sqrt 3 }}$$
$$\eqalign{ & \therefore \left| {\frac{{3\left( {1 + \lambda } \right) + 1\left( {2 - \lambda } \right) - 1\left( {3 + \lambda } \right) + \left( { - 2 - 3\lambda } \right)}}{{\sqrt {{{\left( {1 + \lambda } \right)}^2} + {{\left( {2 - \lambda } \right)}^2} + {{\left( {3 + \lambda } \right)}^2}} }}} \right| = \frac{2}{{\sqrt 3 }} \cr & \Rightarrow \left| {\frac{{ - 2\lambda }}{{\sqrt {3{\lambda ^2} + 4\lambda + 14} }}} \right| = \frac{2}{{\sqrt 3 }} \cr & \Rightarrow 3{\lambda ^2} + 4\lambda + 14 = 3{\lambda ^2} \cr & \Rightarrow \lambda = - \frac{7}{2} \cr} $$
$$\therefore $$ Required equation of plane is
$$\eqalign{ & \left( {x + 2y + 3z - 2} \right) - \frac{7}{2}\left( {x - y + z - 3} \right) = 0 \cr & {\text{or }}5x - 11y + z = 17 \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section