Question

The equation of a curve is $$y = f\left( x \right).$$   The tangents at $$\left( {1,\,f\left( 1 \right)} \right),\,\left( {2,\,f\left( 2 \right)} \right)$$     and $$\left( {3,\,f\left( 3 \right)} \right)$$   make angles $$\frac{\pi }{6},\,\frac{\pi }{3}$$   and $$\frac{\pi }{4}$$ respectively with the positive direction of the x-axis. Then the value of $$\int_2^3 {f'\left( x \right)f''\left( x \right)dx + \int_1^3 {f''\left( x \right)dx} } $$       is equal to :

A. $$ - \frac{1}{{\sqrt 3 }}$$  
B. $$\frac{1}{{\sqrt 3 }}$$
C. 0
D. none of these
Answer :   $$ - \frac{1}{{\sqrt 3 }}$$
Solution :
$$\eqalign{ & {\text{Here,}}\,\,f'\left( 1 \right) = \tan \frac{\pi }{6} = \frac{1}{{\sqrt 3 }} \cr & f'\left( 2 \right) = \tan \frac{\pi }{3} = \sqrt 3 \cr & f'\left( 3 \right) = \tan \frac{\pi }{4} = 1 \cr & {\text{Now, }}\int_2^3 {f'\left( x \right).f''\left( x \right)dx = \left[ {\frac{1}{2}{{\left\{ {f'\left( x \right)} \right\}}^2}} \right]_2^3 = \frac{1}{2}\left[ {{{\left\{ {f'\left( 3 \right)} \right\}}^2} - {{\left\{ {f'\left( 2 \right)} \right\}}^2}} \right]} \cr & \int_1^3 {f''\left( x \right)dx} = \left[ {f'\left( x \right)} \right]_1^3 = f'\left( 3 \right) - f'\left( 1 \right) \cr & \therefore {\text{ value}}\, = \frac{1}{2}\left\{ {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right\} + 1 - \frac{1}{{\sqrt 3 }} = - \frac{1}{{\sqrt 3 }} \cr & \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section