Question

The equation of a circle with origin as a centre and passing through equilateral triangle whose median is of length $$3a$$  is-

A. $${x^2} + {y^2} = 9{a^2}$$
B. $${x^2} + {y^2} = 16{a^2}$$
C. $${x^2} + {y^2} = 4{a^2}$$  
D. $${x^2} + {y^2} = {a^2}$$
Answer :   $${x^2} + {y^2} = 4{a^2}$$
Solution :
Let $$ABC$$   be an equilateral triangle, whose median is $$AD.$$
Circle mcq solution image
Given $$AD = 3a$$
$$\eqalign{ & {\text{In }}\Delta ABD,\,A{B^2} = A{D^2} + B{D^2}; \cr & \Rightarrow {x^2} = 9{a^2} + \left( {\frac{{{x^2}}}{4}} \right)\,\,{\text{where}}\,\,AB = BC = AC = x \cr & \frac{3}{4}{x^2} = 9{a^2} \Rightarrow {x^2} = 12{a^2} \cr & {\text{In }}\Delta OBD,\,O{B^2} = O{D^2} + B{D^2}; \cr & \Rightarrow {r^2} = {\left( {3a - r} \right)^2} + \frac{{{x^2}}}{4} \cr & \Rightarrow {r^2} = 9{a^2} - 6ar + {r^2} + 3{a^2} \cr & \Rightarrow 6ar = 12{a^2} \cr & \Rightarrow r = 2a \cr} $$
So equation of circle is $${x^2} + {y^2} = 4{a^2}$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section