Question

The equation $$\left( {\cos p - 1} \right){x^2} + \left( {\cos p} \right)x + \sin p = 0$$       in $$x$$ has real roots. Then the set of values of $$p$$ is

A. $$\left[ {0,2\pi } \right]$$
B. $$\left[ { - \pi ,0} \right]$$
C. $$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$$
D. $$\left[ {0,\pi } \right]$$  
Answer :   $$\left[ {0,\pi } \right]$$
Solution :
$$\eqalign{ & D \geqslant 0 \cr & \Rightarrow \,\,{\cos ^2}p - 4\sin p \cdot \left( {\cos p - 1} \right) \geqslant 0 \cr & {\text{or, }}{\cos ^2}p + 4\sin p\left( {1 - \cos p} \right) \geqslant 0\,\,\,\,\,\,\,.....\left( 1 \right) \cr} $$
$${\text{As }}{\cos ^2}p \geqslant 0\,\,{\text{and }}1 - \cos p \geqslant 0,\left( 1 \right)$$       will hold for all $$\sin p \geqslant 0.\,{\text{So, }}p \in \left[ {0,\pi } \right].$$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section