Question
The efficiency of a Carnot engine operating between temperatures of $${100^ \circ }C$$ and $${-23^ \circ }C$$ will be
A.
$$\frac{{100 - 23}}{{273}}$$
B.
$$\frac{{100 + 23}}{{373}}$$
C.
$$\frac{{100 + 23}}{{100}}$$
D.
$$\frac{{100 - 23}}{{100}}$$
Answer :
$$\frac{{100 + 23}}{{373}}$$
Solution :
Efficiency of Carnot engine is given by
$$\eta = 1 - \frac{{{T_2}}}{{{T_1}}} = \frac{{{T_1} - {T_2}}}{{{T_1}}}\,.......\left( {\text{i}} \right)$$
Given, $${{T_1}}$$ = temperature of reservoir
$$ = 100 + 273 = 373\,K$$
Given, $${{T_2}}$$ = temperature of sink
$$ = - 23 + 273 = 250\,K$$
Substituting in Eq. (i), we get
$$\eqalign{
& \therefore \eta = \frac{{373 - 250}}{{373}} = \frac{{123}}{{373}} \cr
& = \frac{{100 + 23}}{{373}} \cr} $$