Question

The domain of the function $$f\left( x \right) = {\sin ^{ - 1}}\left\{ {{{\log }_2}\left( {\frac{1}{2}{x^2}} \right)} \right\}{\text{ is}}$$

A. $$\left[ { - 2, - 1} \right) \cup \left[ {1,2} \right]$$
B. $$\left( { - 2, - 1} \right] \cup \left[ {1,2} \right]$$
C. $$\left[ { - 2, - 1} \right] \cup \left[ {1,2} \right]$$  
D. $$\left( { - 2, - 1} \right) \cup \left( {1,2} \right)$$
Answer :   $$\left[ { - 2, - 1} \right] \cup \left[ {1,2} \right]$$
Solution :
For $$f\left( x \right)$$  to be defined, we must have
$$\eqalign{ & - 1 \leqslant {\log _2}\left( {\frac{1}{2}{x^2}} \right) \leqslant 1 \cr & \Rightarrow {2^{ - 1}} \leqslant \frac{1}{2}{x^2} \leqslant {2^1} \cr & \Rightarrow 1 \leqslant {x^2} \leqslant 4\,\,\,.....\left( 1 \right) \cr & {\text{Now}},1 \leqslant {x^2} \cr & \Rightarrow {x^2} - 1 \geqslant 0{\text{ i}}{\text{.e}}{\text{. }}\left( {x - 1} \right)\left( {x + 1} \right) \geqslant 0 \cr & \Rightarrow x \leqslant - 1{\text{ or }}x \geqslant 1\,\,\,.....\left( 2 \right) \cr & {\text{Also}},\,\,{x^2} \leqslant 4 \cr & \Rightarrow {x^2} - 4 \leqslant 0{\text{ i}}{\text{.e}}{\text{. }}\left( {x - 2} \right)\left( {x + 2} \right) \leqslant 0 \cr & \Rightarrow - 2 \leqslant x \leqslant 2\,\,\,\,\,\,.....\left( 3 \right) \cr} $$
Form (2) and (3), we get the domain of
$$\eqalign{ & f = \left\{ {\left( { - \infty , - 1} \right] \cup \left[ {1,\infty } \right)} \right\} \cap \left[ { - 2,2} \right] \cr & = \left[ { - 2, - 1} \right] \cup \left[ {1,2} \right] \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section