Question

The domain of the derivative of the function \[f\left( x \right) = \left\{ \begin{array}{l} {\tan ^{ - 1}}x\,\,\,\,\,\,\,\,\,\,{\rm{if}}\,\,\left| x \right| \le 1\\ \frac{1}{2}\left( {\left| x \right| - 1} \right)\,\,\,{\rm{if}}\,\,\left| x \right| > 1 \end{array} \right.\]       is-

A. $$R - \left\{ 0 \right\}$$
B. $$R - \left\{ 1 \right\}$$
C. $$R - \left\{ { - 1} \right\}$$
D. $$R - \left\{ { - 1,\,1} \right\}$$  
Answer :   $$R - \left\{ { - 1,\,1} \right\}$$
Solution :
The given function is
\[\begin{array}{l} f\left( x \right) = \left\{ \begin{array}{l} {\tan ^{ - 1}}x\,\,\,\,\,\,\,\,{\rm{if}}\,\,\left| x \right| \le 1\\ \frac{1}{2}\left( {\left| x \right| - 1} \right)\,\,\,{\rm{if}}\,\,\left| x \right| > 1 \end{array} \right.\\ f\left( x \right) = \left\{ \begin{array}{l} \frac{1}{2}\left( { - x - 1} \right)\,\,\,{\rm{if}}\,x < - 1\\ {\tan ^{ - 1}}x\,\,\,\,\,\,\,\,\,{\rm{if}} - 1 \le x \le 1\\ \frac{1}{2}\left( {x - 1} \right)\,\,\,{\rm{if}}\,x > 1 \end{array} \right. \end{array}\]
$$\eqalign{ & {\text{Clearly,}}\,\, \cr & {\text{L}}{\text{.H}}{\text{.L}}{\text{. at}}\left( {x = - 1} \right) = \mathop {\lim }\limits_{h \to 0} f\left( { - 1 - h} \right) = 0 \cr & {\text{R}}{\text{.H}}{\text{.L}}{\text{.at }}\left( {x = - 1} \right) = \mathop {\lim }\limits_{h \to 0} f\left( { - 1 + h} \right) \cr & = \mathop {\lim }\limits_{h \to 0} \,{\tan ^{ - 1}}\left( { - 1 + h} \right) = \frac{{3\pi }}{4} \cr & \therefore {\text{L}}{\text{.H}}{\text{.L}}{\text{.}} \ne {\text{R}}{\text{.H}}{\text{.L}}{\text{. at }}x = - 1 \cr} $$
$$\therefore f\left( x \right)$$   is discontinuous at $$x =-1$$
Also we can prove in the same way, that $$f\left( x \right)$$  is discontinuous at $$x = 1$$
$$\therefore f'\left( x \right)$$   can not be found for $$x = \pm 1$$   or domain of $$f'\left( x \right) = R - \left\{ { - 1,\,1} \right\}$$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section