Question

The domain of $$f\left( x \right) = \sqrt {{{\log }_{{x^2} - 1}}\left( x \right)} $$     is :

A. $$\left( {\sqrt 2 ,\, + \infty } \right)$$  
B. $$\left( {0,\, + \infty } \right)$$
C. $$\left( {1,\, + \infty } \right)$$
D. none of these
Answer :   $$\left( {\sqrt 2 ,\, + \infty } \right)$$
Solution :
$${x^2} - 1 > 0,\,{x^2} - 1 \ne 1,\,x > 0\,{\text{ and }}{\log _{{x^2} - 1}}\left( x \right) \geqslant 0$$
The first three imply $$x > 1{\text{ but }}x \ne \sqrt 2 $$
$$\eqalign{ & {\log _{{x^2} - 1}}\left( x \right) \geqslant 0 \Rightarrow x \geqslant 1{\text{ if }}{x^2} - 1 > 1 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \leqslant 1{\text{ if }}{x^2} - 1 < 1 \cr} $$
Now, $${x^2} - 1 > 1$$   or $$x > \sqrt 2 \,\,\left( {\because x > 1} \right)$$    then $$x \geqslant 1$$  which is true for all $$x > \sqrt 2 $$
$${x^2} - 1 < 1$$   or $$1 < x < \sqrt 2 \,\,\left( {\because x > 1} \right)$$     then $$x \leqslant 1$$  which is not true for any $$x$$ in $$\left( {1,\,\sqrt 2 } \right)$$
This gives no value of $$x.$$  Thus $$x > \sqrt 2 $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section