Question

The domain of definition of the function $$y = \frac{1}{{{{\log }_{10}}\left( {1 - x} \right)}} + \sqrt {x + 2} $$       is

A. $$\left( { - 3,\, - 2} \right)$$   excluding $$-2.5$$
B. $$\left[ {0,1} \right]$$   excluding 0.5
C. $$\left[ { - 2,1} \right)$$  excluding 0  
D. none of these
Answer :   $$\left[ { - 2,1} \right)$$  excluding 0
Solution :
$$\eqalign{ & y = \frac{1}{{{{\log }_{10}}\left( {1 - x} \right)}} + \sqrt {x + 2} \cr & y = f\left( x \right) + g\left( x \right) \cr} $$
NOTE THIS STEP: Then domain of given function is $${D_f} \cap {D_g}$$
Now, for domain of $$f\left( x \right) = \frac{1}{{{{\log }_{10}}\left( {1 - x} \right)}}$$
We know it is defined only when $$1 - x > 0$$   and $$1 - x \ne 1 \Rightarrow x < 1\,{\text{and}}\,x \ne 0$$
$$\eqalign{ & \therefore {D_f} = \left( { - \infty ,1} \right) - \left\{ 0 \right\} \cr & {\text{For}}\,{\text{domain}}\,{\text{of}}\,g\left( x \right) = \sqrt {x + 2} \cr & x + 2 \geqslant 0 \cr & \Rightarrow x \geqslant - 2 \cr & \therefore {D_g} = \left[ { - 2,\infty } \right) \cr} $$

Function mcq solution image

$$\therefore $$ Common domain is $$\left[ { - 2,1} \right) - \left\{ 0 \right\}$$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section